PhoBERT Vietnamese Sentiment Analysis on UIT-VSFC dataset with transformers and Pytorch Lightning

Tutorials / Implementations
NLP
Apply PhoBERT on UIT-VSFC dataset.
Published

June 21, 2021

The full notebook is available here.

Introduction

PhoBERT: Pre-trained language models for Vietnamese

PhoBERT models are the SOTA language models for Vietnamese. There are two versions of PhoBERT, which are PhoBERT base and PhoBERT large. Their pretraining approach is based on RoBERTa which optimizes the BERT pre-training procedure for more robust performance. PhoBERT has achieved SOTA in many downstream task such as POS, Dependency parsing, NER and NLI. You can read more about the PhoBERT here.

UIT-VSFC: Vietnamese Students’ Feedback Corpus

Vietnamese Students’ Feedback Corpus (UIT-VSFC) is the resource consists of over 16,000 sentences which are human-annotated with two different tasks: sentiment-based and topic-based classifications.

In this project, we will apply PhoBERT to do the sentiment classification task on UIT-VSFC dataset. We will use pytorch-lightning and transformers for this project.

Install required packages

%%capture
!pip install pytorch-lightning
!pip install torchmetrics
!pip install transformers
!pip install datasets

Import required packages

import os
import zipfile
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
from urllib.request import urlretrieve

import pandas as pd
from tqdm import tqdm

import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import torchmetrics
from datasets import load_dataset
from pytorch_lightning import loggers as pl_loggers
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.utils.data import DataLoader
from transformers import (AutoModelForSequenceClassification, AutoTokenizer,
                          DataCollatorWithPadding)

# For repoducibility
pl.utilities.seed.seed_everything(seed=2401, workers=True)
Global seed set to 2401
2401

Define dataset, dataloader class and utility functions

class TqdmUpTo(tqdm):
    """From https://github.com/tqdm/tqdm/blob/master/examples/tqdm_wget.py"""

    def update_to(self, blocks=1, bsize=1, tsize=None):
        """
        Parameters
        ----------
        blocks: int, optional
            Number of blocks transferred so far [default: 1].
        bsize: int, optional
            Size of each block (in tqdm units) [default: 1].
        tsize: int, optional
            Total size (in tqdm units). If [default: None] remains unchanged.
        """
        if tsize is not None:
            self.total = tsize  # pylint: disable=attribute-defined-outside-init
        self.update(blocks * bsize - self.n)  # will also set self.n = b * bsize


def download_url(url, filename, directory='.'):
    """Download a file from url to filename, with a progress bar."""
    if not os.path.exists(directory):
        os.makedirs(directory)
    path = os.path.join(directory, filename)

    with TqdmUpTo(unit="B", unit_scale=True, unit_divisor=1024, miniters=1) as t:
        urlretrieve(url, path, reporthook=t.update_to, data=None)  # nosec
    return  path

def _load_data_from(data_dir: Union[str, Path]):
    fnames = ['sentiments.txt', 'sents.txt', 'topics.txt']
    sentiments = []
    sents = []
    topics = []
    for name in fnames:
        with open(f"{data_dir}/{name}", 'r') as f:
            if name == "sentiments.txt":
                sentiments = [int(line.strip()) for line in f.readlines()]
            elif name == "sents.txt":
                sents = [line.strip() for line in f.readlines()]        
            else:
                topics = [int(line.strip()) for line in f.readlines()]
    return sents, sentiments, topics

def _save_to_csv(file_path: Union[str, Path], data):
    sents, sentiments, topics = data
    df = pd.DataFrame({
        "sents": sents,
        "labels": sentiments,
        "topics": topics
    })
    df.to_csv(file_path, index=False)
    return file_path

Define the UIT_VSFC datamodule class. You can read more here.

DS_URL = "https://drive.google.com/uc?export=download&id=1zg7cbRF2nFuJ2Q-AB63xlKuwEX3dTBsx"

class UIT_VSFC(pl.LightningDataModule):
    """
    The Twitter dataset is ndwritten character digits derived from the NIST Special Database 19
    """
    def __init__(self, tokenizer, opts: Dict[str, Any]):
        super().__init__()
        self.tokenizer = tokenizer
        self.batch_size = opts['batch_size']
        self.num_workers = opts['num_workers']
        self.on_gpu = opts['on_gpu']
        self.data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
        self.dataset = None
        self.mapping = {"negative": 0, "neutral": 1, "positive": 2}
        self.inverse_mapping = {v: k for k, v in enumerate(self.mapping)}
        
    def prepare_data(self, *args, **kwargs) -> None:
        data_dir = 'download/UIT_VSFC'
        data_path = 'download/UIT_VSFC.zip'
        if not os.path.exists(data_path):
            # Download the data
            data_path = download_url(DS_URL, "UIT_VSFC.zip", "download")
        if not os.path.exists(data_dir):
            # Unzip file
            with zipfile.ZipFile(data_path, 'r') as zip_ref:
                zip_ref.extractall(data_dir)
        # Load and save data to csv
        for path in ["train", "dev", "test"]:
            data = _load_data_from(f"download/UIT_VSFC/{path}")
            if path == "train":
                self.train_path = _save_to_csv(f'{path}.csv', data)
            elif path == "dev":
                self.dev_path = _save_to_csv(f'{path}.csv', data)
            else:
                self.test_path = _save_to_csv(f'{path}.csv', data)

    def setup(self, stage: str = None) -> None:
        def encode(sample):
            return self.tokenizer(sample['sents'], truncation=True)
        
        raw_datasets = load_dataset('csv', data_files={'train': self.train_path, 'dev': self.dev_path,
                                                 'test': self.test_path})

        self.dataset = raw_datasets.map(encode, batched=True)
        self.dataset = self.dataset.remove_columns(
            ['sents', 'topics']
        )
        self.dataset.set_format("torch") # Set the format of the datasets so they return PyTorch tensors instead of lists.

    def train_dataloader(self):
        return DataLoader(
            self.dataset['train'],
            shuffle=True,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.on_gpu,
            collate_fn=self.data_collator
        ) 

    def val_dataloader(self):
        return DataLoader(
            self.dataset['dev'],
            shuffle=False,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.on_gpu,
            collate_fn=self.data_collator
        ) 

    def test_dataloader(self):
        return DataLoader(
            self.dataset['test'],
            shuffle=False,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.on_gpu,
            collate_fn=self.data_collator
        ) 

    def __repr__(self):
        basic = f"Twitter Dataset\nNum classes: {len(self.mapping)}\nMapping: {self.mapping}\n"
        if self.dataset is None:
            return basic

        batch = next(iter(self.train_dataloader()))
        data = (
            f"Train/val/test sizes: {len(self.dataset['train'])}, {len(self.dataset['dev'])}, {len(self.dataset['test'])}\n"
            f"Input_ids shape: {batch['input_ids'].shape}"
        )
        return basic + data

Implementation

We will use the transformers model and wrapping it with the pytorch-lightning model class. This will help our code more clean and debug. You can read more about the pytorch-lightning model class here

class PhoBERT(pl.LightningModule):
    def __init__(self, lr, weight_decay):
        super().__init__()
        self.model = AutoModelForSequenceClassification.from_pretrained("vinai/phobert-base", num_labels=3)
        self.lr = lr
        self.weight_decay = weight_decay

        # Define metrics
        self.train_acc = torchmetrics.Accuracy()
        self.val_acc = torchmetrics.Accuracy()
        self.val_f1 = torchmetrics.F1(num_classes=3)
        self.test_acc = torchmetrics.Accuracy()
        self.test_f1 = torchmetrics.F1(num_classes=3)
    
    def configure_optimizers(self):
        return torch.optim.AdamW(self.parameters(), lr=self.lr, weight_decay=self.weight_decay)
    
    def training_step(self, batch, batch_idx):
        outputs = self.model(**batch)
        loss, logits = outputs.loss, outputs.logits
        sentiments = batch['labels']
        scores = F.softmax(logits, dim=-1)
        self.train_acc(scores, sentiments)
        self.log('train_acc', self.train_acc, on_step=False, on_epoch=True, prog_bar=True, logger=True)
        self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
        return loss

    def validation_step(self, batch, batch_idx):
        outputs = self.model(**batch)
        loss, logits = outputs.loss, outputs.logits
        sentiments = batch['labels']
        scores = F.softmax(logits, dim=-1)
        self.val_acc(scores, sentiments)
        self.val_f1(scores, sentiments)
        self.log('val_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
        self.log('val_acc', self.val_acc, on_step=False, on_epoch=True, prog_bar=True, logger=True)
        self.log('val_f1', self.val_f1, on_step=False, on_epoch=True, prog_bar=True, logger=True)

    def test_step(self, batch, batch_idx):
        outputs = self.model(**batch)
        logits = outputs.logits
        sentiments = batch['labels']
        scores = F.softmax(logits, dim=-1)
        self.test_acc(scores, sentiments)
        self.test_f1(scores, sentiments)
        self.log('test_acc', self.test_acc, on_step=False, on_epoch=True, logger=True)
        self.log('test_f1', self.test_f1, on_step=False, on_epoch=True, logger=True)

Training

tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
options = {
    "on_gpu": True,
    "batch_size": 32,
    "num_workers": 4
}
datamodule = UIT_VSFC(tokenizer, options)

tb_logger = pl_loggers.TensorBoardLogger('logs/') # create logger for tensorboard

# hyper-parameters
lr = 2e-5
max_epochs = 10
weight_decay = 0.01

model = PhoBERT(lr, weight_decay)

checkpoint_callback = ModelCheckpoint(
    monitor='val_f1', # save the model with the best validation accuracy
    dirpath='checkpoints',
    mode='max',
)
trainer = pl.Trainer(gpus=1, max_epochs=max_epochs, logger=tb_logger, callbacks=[checkpoint_callback], deterministic=True)
# trainer = pl.Trainer(fast_dev_run=True) #Debug 
# trainer = pl.Trainer(overfit_batches=0.1, max_epochs=max_epochs) #Debug
trainer.fit(model, datamodule)
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Some weights of the model checkpoint at vinai/phobert-base were not used when initializing RobertaForSequenceClassification: ['lm_head.decoder.bias', 'lm_head.bias', 'lm_head.dense.weight', 'roberta.pooler.dense.weight', 'lm_head.decoder.weight', 'lm_head.layer_norm.bias', 'roberta.pooler.dense.bias', 'lm_head.layer_norm.weight', 'lm_head.dense.bias']
- This IS expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at vinai/phobert-base and are newly initialized: ['classifier.out_proj.weight', 'classifier.out_proj.bias', 'classifier.dense.weight', 'classifier.dense.bias']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
Using custom data configuration default-d20422fbdfea28fe
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]

  | Name      | Type                             | Params
---------------------------------------------------------------
0 | model     | RobertaForSequenceClassification | 135 M 
1 | train_acc | Accuracy                         | 0     
2 | val_acc   | Accuracy                         | 0     
3 | val_f1    | F1                               | 0     
4 | test_acc  | Accuracy                         | 0     
5 | test_f1   | F1                               | 0     
---------------------------------------------------------------
135 M     Trainable params
0         Non-trainable params
135 M     Total params
540.002   Total estimated model params size (MB)
Global seed set to 2401
Downloading and preparing dataset csv/default (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /root/.cache/huggingface/datasets/csv/default-d20422fbdfea28fe/0.0.0/2dc6629a9ff6b5697d82c25b73731dd440507a69cbce8b425db50b751e8fcfd0...
Dataset csv downloaded and prepared to /root/.cache/huggingface/datasets/csv/default-d20422fbdfea28fe/0.0.0/2dc6629a9ff6b5697d82c25b73731dd440507a69cbce8b425db50b751e8fcfd0. Subsequent calls will reuse this data.



trainer.test(ckpt_path=checkpoint_callback.best_model_path, test_dataloaders=datamodule.test_dataloader())
Using custom data configuration default-d20422fbdfea28fe
Reusing dataset csv (/root/.cache/huggingface/datasets/csv/default-d20422fbdfea28fe/0.0.0/2dc6629a9ff6b5697d82c25b73731dd440507a69cbce8b425db50b751e8fcfd0)
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]




--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'test_acc': 0.9314592480659485, 'test_f1': 0.9314592480659485}
--------------------------------------------------------------------------------
[{'test_acc': 0.9314592480659485, 'test_f1': 0.9314592480659485}]

Discussion

Results on test dataset:

Method Accuracy Macro-F1
phoBERT 0.931 0.931
MaxEnt (paper) 87.9 87.9

We haven’t tune the model but still get better result than the one in the UIT-VSFC paper.

To tune the model, there are somethings need to set up: + Wandb/Tensorboard: these tools will help us to visualize the loss per epoch of the model and other relevant information regarding metrics. Using those information we can come up with some ideas to tune the model.

  • Wandb sweep: this tool allows us to define the range of hyperparameters we want to tune.

Lessons

  • When using transformers’ models, we should create out Dataset using the datasets library since it is helps to make the preprocessing step easier and cleaner.
  • Be careful with the metrics, for example, F1 micro and macro.
  • F1 and Accuracy are equal for cases in which every instance must be classified into one (and only one) class